Probability
1.1 Axioms of probability theory

Throughout this book, we use Kolmogorov's axioms.
Axiom 1: $P(E) \in R,>0$
Axiom 2: $\quad P(a l l)=1$
Axciom 3: 6-additivity

$$
p\left(U E_{i}\right)=\sum P\left(E_{i}\right) \text { if } E_{i}^{\prime} \text { s are }
$$

A probability space $=\{\Omega, \bar{\Gamma}, T\}$
$\Omega \rightarrow$ non-enpty set $\omega \in \Omega$ sample space coutome
$F \rightarrow$ set of subsets of Ω called events \longleftrightarrow_{G}-algebra satisfying following properties
$A_{1}: \Omega \in F$
A_{2} : $\Omega f \quad A \in F, A^{c} \in F$
$A 3$: If $A, B \in F, A \cup B \in F$ $P \rightarrow$ probability 'measure on F satisfying Kolmogorov's properties

Bored sets \rightarrow smallest topology covering all open balls in a given space.
Borel σ algebra B^{n} of subsets R^{n} is the smallest σ algebra containing all sets of the form $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \ldots\left[a_{n}, b_{n}\right]^{\circ}$
(Contimity of Probability) suppose B_{1}, B_{2}, \ldots is a sequence of events
(a) If $B_{1} \subset B_{2} \subset \ldots$ then $\lim _{m \rightarrow \infty} P\left(B_{j}\right)=P\left(\cup_{i=1}^{\infty} B_{i}\right)$
(b) If $B_{1} \supset B_{2} \supset \ldots$ then $\lim _{j \rightarrow \infty} P\left(B_{j}\right) \stackrel{j \rightarrow \infty}{=} P\left(\cap_{i=1}^{\infty} B_{i}\right)$
1.2 Independence and conditional probability

Events $A_{1}, A_{2}, \ldots A_{R}$ are defined to be independent if

$$
P\left(A_{1}, A_{2}, \ldots A_{R}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{R}\right)
$$

A_{1}, A_{2}, A_{3} are independent if:

$$
\begin{aligned}
& P\left(A_{1}, A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \\
& P\left(A_{2}, A_{3}\right)=P\left(A_{2}\right) P\left(A_{3}\right) \\
& P\left(A_{1}, A_{3}\right)=P\left(A_{1}\right) P\left(A_{3}\right) \\
& P\left(A_{1}, A_{2}, A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)
\end{aligned}
$$

A_{1}, A_{2}, A_{3} are pairwise independent if

$$
P\left(A_{1}, A_{2}\right)=P\left(A_{1}, A_{2}\right)
$$

only for 2 events at a
time

Conditional probability of A given B, where A, B are events and $P(B) \neq 0$.

$$
P(A \mid B)=\frac{P(A \cup B)}{P(B)}
$$

Events $E_{1}, E_{2}, \ldots E_{R}$ are said to form a partition of Ω if the events are mutually exclusive and
$E_{T} \cup E_{2}$ U... $E_{R}=\Omega$ and

$$
\begin{aligned}
& P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots P\left(E_{R}\right)=1 \\
& P(A)=P\left(A E_{1}\right)+P\left(A E_{2}\right)+P\left(A E_{3}\right) \\
& =P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)+P\left(A \mid E_{3}\right) P\left(E_{3}\right) \\
& P\left(E_{i} \mid A\right) P(A)=P\left(A \mid E_{i}\right) P\left(E_{i}\right) \\
& P\left(E_{i} \mid A\right)=\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{P(A)}
\end{aligned}
$$

The event $\left\{A_{n}\right.$ infinitely often\} is the set of $\omega \in \Omega$ such that $\omega \in A_{n}$, for infinitely many values of n.

Borel-Cantelli lemma: Let $\left(A_{n}: n \geq 1\right)$ be a sequence of events and let $P_{n}=P\left(A_{n}\right)$
(a) If $\sum_{n=1}^{\infty} P_{n}<\infty$, then $P\left\{A_{n}\right.$ infinitely often $\}=0$
(b) If $\sum_{n=1}^{\infty} p_{n}=\infty$, and A_{1}, A_{2}, \ldots are mutually independent, then $P\left\{A_{n}\right.$ infinitely often $\}=1$
$\left\{A_{n}\right.$ infinitely often $\}=\bigcap_{R \geq 1} \bigcup_{n \geq R} E_{n}$
\{An eventually $\}=\bigcup_{k \geq 1} \bigcap_{n \geq k} E_{n}$
1.3 Random Variables \& their distributions

$$
\begin{aligned}
F_{x}(c)= & P\left\{w_{0} x \leq c\right\}=p\{x \leq c\} \\
& P\{x<c\}=F_{x}(c-\varepsilon) \\
& P\{x=c\}=F_{x}(c)-F_{x}(c-\varepsilon)
\end{aligned}
$$

A function F is the $C D F$ if:
Ac: F is non-decreasing
$A_{2}: \lim _{x \rightarrow \infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0$
$A_{3}: F$ is right continuous
Discrete random variable \rightarrow probability mass function (pip)

$$
\begin{aligned}
& P_{X}(x)=P\{X=x\} \\
& F_{X}(x)=\sum_{y \leq x} P_{X}(y)
\end{aligned}
$$

Continuous random variable \rightarrow cumulative density function

$$
F_{x}(x)=\int_{-\infty} f_{x}(y) d y
$$

$f x \rightarrow$ probability density

$$
f_{x}(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{x}^{x+\varepsilon} f_{x}(y) d y
$$ function

probability measure P_{x} :

$$
P_{x}((a, b])=P\{x \in[a, b]\}
$$

1.4 Functions of a Random Variable

(1) Examine possible ranges of X, y
(2) Find CDF of $y: F_{y}(c)=p\{y \leq c\}=p\{g(x) \leq c\}$
(3) If $F y$ has piecewise continuous derivative, and if oof by is desired, differentiate $F y$.

Let F be a function satisfying the properties of a $C P F$, and let U be uniformly distributed over the interval $[0,1]$. The problem is to find a function
g such that F is CDF of $g(U)_{0}$

$$
\left.\begin{array}{rl}
Y & F_{x}(x)=p\{g(u) \leq x\}
\end{array}=p\left\{v \leq g^{-1}(x)\right\}\right\}
$$

Thus, $g(x)=F^{-1}(x)$
1.5 Expectation of a Random Variable

A random variable is called simple if there is a finite set $\left\{x_{1}, \ldots, x_{m}\right\}$ such that $X(\omega) \in\left\{x_{1}, \ldots, x_{n}\right\}$ for all w. The expectation

$$
E[x]=\sum_{i=1}^{m} x_{i} P\left\{x=x_{i}\right\}
$$

For continuous random Variable,

$$
E[X]=\int_{\Omega} X(\omega) P(d \omega)
$$

obviously, by definition: $E[X+Y]=E[X]+E[Y]$
Expectation has the following properties:

1. Linearity $\rightarrow \quad E[x+y]=E[x]+E[y]$
2. Preservation of order \rightarrow if $P\{x \geq y\}=1$; then $E[X] \geq E[Y]$
3. If x has pdf $f x$ then

$$
E[x]=\int_{-\infty}^{\infty} x f x(x) d x
$$

4. If X has mf P_{x} then

$$
E[x]=\sum_{x>0} x p_{x}(x)+\sum_{x<0} x p_{x}(x)
$$

5. Law of the unconscious statistician (LOTUS) \rightarrow if g is Borel measurable,

$$
E[g(x)]=\int_{\Omega} g(X(\omega)) P(d \omega)
$$

If X is a continues random variable
6. Integration by parts formula \rightarrow

$$
\left.E[x]=\int_{-\infty}^{\infty} x f x(x) d x\right] \text { Integration by parts }
$$

$$
\begin{gathered}
\operatorname{Suv} d x=u \int v d x-\int U^{\prime}\left(\int v d x\right) d x \\
=x-\int_{-\infty}^{\infty} F(x) d x \\
\operatorname{Var}[x]=E\left[(x-E[x])^{2}\right]=E\left[x^{2}\right]-E[x]^{2}
\end{gathered}
$$

- Markov Inequality: $y \geqslant 0, c>0$

$$
\begin{aligned}
& P\{y \geq c\} \leq \frac{E[y]}{c} \\
& \quad \int_{c}^{\infty} f(x) d x \leq \int_{0}^{\infty} y f(y) d y
\end{aligned}
$$

- Chebychev Inequality: If X is a random variable with finite mean μ and variance σ^{2}, then for any do,

$$
p\{|x-\mu| \geq d\} \leq \frac{\sigma^{2}}{d^{2}}
$$

The characteristic function ϕ_{x} of a random variable x is defined by

$$
\begin{aligned}
& \Phi_{x}(\mu e)=E\left[e^{j u x}\right] \\
u \rightarrow & \text { real } \\
j \rightarrow & \text { imaginary } \sqrt{-1}
\end{aligned}
$$

Two random variables have the same probability distribution if and only if they have the same characteristic function.

If $E\left[x^{k}\right]$ exists and finite, then

$$
\begin{aligned}
& \phi_{X}^{(R)}(0)=\dot{j}^{k} E\left[x^{k}\right] \\
& \frac{1}{\text { derivative }} \text { pto orde }
\end{aligned}
$$

z-transform of the pms

$$
\begin{aligned}
& \psi_{X}(z)=E\left[z^{x}\right]=\sum_{R=0}^{\infty} z^{R} P_{x}(R) \\
& \text { to characteristic function }
\end{aligned}
$$

1.6 Frequently Used Distributions

- Bernoulli: $\quad\left\{\begin{array}{cl}p, i=1 & \text { mean }=p \\ 1-p, i=0 & \text { var }=p(1-p) \\ 0, \text { otherowse } & \end{array}\right.$

$$
z \text {-transform }=1-p+\rho z
$$

- Poisson :

$$
\begin{array}{cl}
p(i)=\frac{\lambda^{i} e^{-\lambda}}{i!} & \text { mean }=\lambda \\
z \text {-transform }=\exp (\lambda(z-1))
\end{array}
$$

- Binomial:

$$
\binom{n}{i} p^{i}(1-p)^{n-i}
$$

$$
\text { mean }=n p
$$

$$
\text { var }=n_{p}(1-p)
$$

$$
z-\text { transform }=(1-p+p z)^{n}
$$

- Geometric: $p(i)=(1-p)^{i-1} p$

$$
\begin{aligned}
& \text { mean }=1 / p \\
& \text { var }=\frac{1-p}{p^{2}}
\end{aligned}
$$

memoryless property

$$
\rightarrow p(x>i+j \mid x>i)=p(x>j)
$$

- Exponential: $f(x)=\lambda e^{-\lambda x}$

$$
\phi=\frac{\lambda}{\lambda-j \mu}
$$

$$
\begin{aligned}
& \text { man }=1 / \lambda \\
& \text { var }=1 / \lambda^{2}
\end{aligned}
$$

memonyless property

- Uniform: $f(x)=\frac{1}{b-a}$

$$
\phi=\frac{e^{j \mu b}-e^{j u a}}{j u(b-a)}
$$

$$
\begin{aligned}
& \text { mean }=a+b / 2 \\
& \text { var }=(b-a)^{2} / 12
\end{aligned}
$$

- Gamma: $\begin{aligned} f(x) & =\frac{\alpha^{n} x^{n-1} e^{-\alpha x}}{\Gamma(n)}, x \geq 0 \\ \text { where } \Gamma(n) & =\int_{0}^{\infty} s^{n-1} e^{-s} d s\end{aligned}$

$$
\text { mean }=n / \alpha
$$

$$
\operatorname{var}=n / \alpha^{2}
$$

$$
\phi=\left(\frac{\alpha}{\alpha-j \mu}\right)^{n}
$$

- Rayleigh: $f(\gamma)=\frac{\gamma}{\sigma^{2}} \exp \left(\frac{-r^{2}}{2 \sigma^{2}}\right) \quad$ mean $=6 \sqrt{\pi / 2}$

$$
C D F=1-\exp \left(\frac{-\gamma^{2}}{2 \sigma^{2}}\right) \quad \text { var }=\sigma^{2}\left(2-\frac{\pi}{2}\right)
$$

1.7 Failure Rate Functions

Eventually a system or component of a system would fail.

Let T be the random variable that denotes the lifetime of this item with poof $f T$.

The failure rate function h :

$$
\begin{aligned}
& h(t) \triangleq \lim _{\varepsilon \rightarrow 0} \frac{P(t<T \leq t+\varepsilon|T\rangle t)}{\varepsilon} \\
&= \lim _{\varepsilon \rightarrow 0} \frac{F(t+\varepsilon)-F(t)}{[1-F(t)] \varepsilon} \\
&= \frac{f_{T}(t)}{(1-F(t))} \rightarrow p d f \\
& \rightarrow o d f \\
& \text { Here, } F=1-e^{\int_{0}^{t} h(s) d s}
\end{aligned}
$$

1.8 Jointly Distributed random variables

Let $x_{1}, x_{2}, \ldots x_{m}$ be random variables on a single probability space (Ω, F, P). The joint cumulative distribution function ($C D F$) is the function on R^{m} defined by:

$$
F_{x_{1} x_{2}, \ldots x_{m}}\left(x_{1}, \ldots, x_{m}\right)=P\left(X_{1} \leqslant x_{1}, X_{2} \leqslant x_{2} \ldots\right)
$$

If R is the rectangular region $R(a, b] \times\left(a^{\prime}, b^{\prime}\right]$ in the plane, then

$$
\begin{align*}
P\left\{\left(x_{1}, x_{2}\right) \in R\right\}= & F\left(a^{\prime} b^{\prime}\right)-F\left(a, b^{\prime}\right) \tag{a,b}\\
& -F\left(a^{\prime}, b\right)+F(a, b)
\end{align*}
$$

By countable additivity axiom of probability,

$$
\begin{aligned}
& F_{x_{1}}, x_{2}\left(x_{1}, \infty\right)=F_{x_{1}}\left(x_{1}\right) \\
& f_{x_{1}}\left(v_{1}\right)=\int_{-\infty}^{\infty} f_{x_{1} x_{2}}\left(u_{1}, v_{2}\right) d v_{2}
\end{aligned}
$$

\rightarrow marginal poof
The joint characteristic function of X, \ldots, X_{m} is the function on R^{m} defined by

$$
\psi_{x_{1}, x_{2} \ldots}\left(v_{1}, v_{2}, \ldots u_{m}\right)=E\left[e^{j\left(x_{1}+x_{2} v_{2}+\ldots\right)}\right]
$$

Random Variables are said to be independent if for wry bored subsets, the events are independent.

$$
F_{x_{1}}, x_{2} \ldots\left(x_{1}, \ldots x_{m}\right)=F_{x_{1}}\left(x_{1}\right) \bar{r}_{x_{2}}\left(x_{2}\right) \ldots F_{x_{m}}\left(x_{m}\right)
$$

1.9 Conditional Densities

$$
\begin{aligned}
& f_{y}(y)=\int_{-\infty}^{\infty} f_{x y}(x, y) d x \\
& f_{x \mid y}(x \mid y)=\frac{f_{x y}(x, y)}{f_{y}(y)}
\end{aligned}
$$

If $f_{x}(y)$ is fixed, conditional poll is a function of pelf.
conditional expectation Imear:

$$
E[x \mid y=y]=\int_{-\infty}^{\infty} x f_{x \mid y}(x \mid y) d x
$$

1.10 Correlation and Covariance

$$
\begin{aligned}
& \text { Correlation }=E[x y] \\
& \text { covariance }=E[(x-E[x])(y-E[y])]=\operatorname{Cov}(x, y) \\
& \text { correlation coefficient }=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x) \operatorname{Var}(y)}}
\end{aligned}
$$

A fundamental inequality is Schwarz's inequality

$$
|E[x y]| \leq \sqrt{E\left[x^{2}\right] E\left[y^{2}\right]}
$$

The Schwarz's inequality is equivalent to the I triangle inequality for random variables:

$$
\begin{aligned}
& E\left[(x+y)^{2}\right]^{1 / 2} \leq E\left[x^{2}\right]^{1 / 2}+E\left[y^{2}\right]^{1 / 2} \\
& \operatorname{Cov}(x, y) \leq \sqrt{\operatorname{Var}(x) \operatorname{Var}(y)}
\end{aligned}
$$ and $(y-E[y])$

$$
\begin{aligned}
\operatorname{Cov}(x, y) & =E[x(y-E[y])]=E[(x-E[x]) y] \\
& =E[x y]-E[x] E[y]
\end{aligned}
$$

$$
\operatorname{Cov}(x, y)=0^{9 t}
$$

If x, y are independent, they are uncorrelated.

$$
\begin{aligned}
\operatorname{Cov}(x+y, u+v) & =\operatorname{Cov}(x, u)+\operatorname{Cov}(x, v)+\operatorname{Cov}(y, u)+\operatorname{Cov}(y, v) \\
\operatorname{Cov}(a x+b, c y+d) & =\operatorname{ac} \operatorname{Cov}(x, y) \\
\operatorname{Var}\left(S_{m}\right) & =\operatorname{Cov}\left(S_{m}, S_{m}\right) \quad \operatorname{suppose} \quad \operatorname{Sm}=x_{1}+x_{2}+\ldots X_{m} \\
& =\sum_{i}^{\operatorname{Var}\left(x_{i}\right)+\sum_{i, j ; i+j} \operatorname{Cov}\left(x_{i}, x_{j}\right)}
\end{aligned}
$$

1.11 Transformation of random vectors

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)
$$

Let g be a one-to-one mapping from R^{m} to R^{m}.

$$
y=g(x)
$$

Suppose that the Jeeobian matrix of derivatives $\frac{\partial y}{\partial x}(x)$ is continuous in x and non singular for all x. By the inverse function theorem of vector calculus, it follows that the Jacobian matrix of the inverse mopping

$$
\begin{aligned}
& \frac{\partial x}{\partial y}(y)=\left(\frac{\partial y}{\partial x}(x)\right)^{-1} \\
& f_{y}(y)=\frac{f_{x}(x)}{\left|\frac{\partial y(x)}{\partial x}\right|}
\end{aligned}
$$

